An indicated torque estimation method based on the Elman neural network for a turbocharged diesel engine

Author:

Ge Yanwu1,Huang Ying1,Hao Donghao1,Li Gang1,Li Huan1

Affiliation:

1. School of Mechanical and Vehicle Engineering, Beijing Institute of Technology, Beijing, People’s Republic of China

Abstract

A model-based indicated torque estimation method for a turbocharged diesel engine is presented in this study. The proposed model consists of two submodels: a steady-state indicated torque model; a transient torque coefficient model using the Elman neural network. Experiments are designed to acquire the database for the model. The optimal parameters of the Elman neural network are determined; the results show that the mean absolute percentage error of the transient torque coefficient for the estimated values using the Elman neural network and the experimental values is within 2% and the maximum error is about 7%. A comparison of the usability of the back-propagation network and that of the Elman neural network for transient estimation problems is studied; the results show that the Elman neural network is more applicable in terms of the transient accuracy and the convergence time. To validate the accuracy of the model, the experimental results for a new engine speed with two new processes are employed as test data; it is shown that the mean absolute percentage error of the indicated torque is within 2% and the maximum error is about 6%. Furthermore, explicit formulation of the Elman neural network model is acquired and rewritten as C code. Then, online validation is conducted and the results show that the mean absolute percentage error of the indicated torque is within 6%, with a maximum error of 15%.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3