Soft Sensor Model Based on Improved Elman Neural Network with Variable Data Preprocessing and Its Application

Author:

Zhu Hai-bo1ORCID,Zhang Yong1ORCID

Affiliation:

1. School of Electronics and Information Engineering, University of Science and Technology Liaoning, Anshan 114051, China

Abstract

In order to solve the problems of strong coupling, nonlinearity, and complex mechanism in real-world engineering process, building soft sensor with excellent performance and robustness has become the core issue in industrial processes. In this paper, we propose a new soft sensor model based on improved Elman neural network (Elman NN) and introduce variable data preprocessing method to the soft sensor model. The improved Elman NN employs local feedback and feedforward network mechanism through context layer to accurately reflect the dynamic characteristics of the soft sensor model, which has the superiority to approximate delay systems and adaption of time-varying characteristics. The proposed variable data preprocessing method adopts combining Isometric Mapping (ISOMAP) with local linear embedding (LLE), which effectively maintains the neighborhood structure and the global mutual distance of dataset to remove the noises and data redundancy. The soft sensor model based on improved Elman NN with variable data preprocessing method by combining ISOMAP and LLE is applied in practical sintering and pelletizing to estimate the temperature in the rotary kiln calcining process. Comparing several conventional soft sensor model methods, the results indicate that the proposed method has more excellent generalization performance and robustness. Its model prediction accuracy and anti-interference ability have been improved, which provide an effective and promising method for the industrial process application.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3