A model-based method of tire-road friction estimation for articulated steering vehicles

Author:

Gao Lulu12ORCID,Wang Shite1,Wang Dongyue1,Ma Fei1,Dong Yueqi1

Affiliation:

1. University of Science and Technology Beijing, Beijing, China

2. Shunde Graduate School, Foshan, China

Abstract

Articulated steering vehicles (ASV) are widely used in many industries for their high efficiency and excellent maneuverability. The autonomous driving and intelligent control of ASV are extremely critical owing to the operation characteristics. As a very important parameter, the tire-road friction coefficient (TRFC) determines the extreme tire force directly in the process of intelligent control. However, it cannot be obtained with the existing methods for the harsh environment and special structure of ASV. This paper proposed a two-layer model-based method of tire-road friction coefficient estimation for ASV. The dynamic models of ASV in the XY plane, including the longitudinal and lateral models of frames, tire forces, and steering system models, are established first. The dynamic models are embedded into the upper layer with a Kalman filter (KF) to estimate the tire forces in longitudinal and lateral directions. During the process, some self-contained sensors, including the state sensors of frames and steering system, are used to provide the observation data. In the lower layer, a recursive least square (RLS) method with a forgetting factor is used to obtain the TRFC and tire stiffness parameters with the aid of the tire model. The simulation and field test are carried out to validate the method under comprehensive conditions, in which different steering commands, velocities, and roads are included. The simulation and field test results show that the forgetting factor has a significant influence on the convergence and robustness of the proposed method. The forgetting factor τ = 0.95 is used in the field test, the estimation result of dry concrete road friction coefficient is around 0.83. The results indicated that the proposed method can obtain the TRFC and tire parameters dynamically for ASVs.

Funder

Foshan Science and Technology Innovation Project

the Postdoctoral Science Foundation of Shunde Graduate School

National Natural Science Foundation of China

the fellowship of China Postdoctoral Science Foundation

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3