Improved sliding mode extension control of vehicle active front wheel steering based on extended state observer

Author:

Huang Yuang1ORCID,Zhao Youqun1ORCID,Wang Junzhu12,Lin Fen1ORCID

Affiliation:

1. College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China

2. Yubei Steering System (Xinxiang) Co. Ltd, Xinxiang, China

Abstract

In order to improve the handling stability of electric vehicles, a new active front-wheel steering (AFS) control method was proposed. Firstly, parametric uncertainty and external interference in vehicle dynamics are summarized as a nonlinear interference term in vehicle model. An extended state observer (ESO) is designed to observe and compensate the nonlinear interference terms in real time, so as to improve the accuracy and control effect of the model. Secondly, in order to further increase the convergence speed and effectively suppress the chattering phenomenon in sliding mode control without affecting its robustness and reaching speed, an integral exponential fast terminal sliding mode controller (IEFTSMC) based on fast exponential reaching law (FERL) is designed. The problem that the control effect of some regions becomes worse when a single control algorithm is used for global region control in traditional AFS control is addressed. By combining extension theory with sliding mode control method, an improved sliding mode extension control is designed to improve the effect of AFS global control. Finally, comparative simulation tests are carried out on the CarSim/Simulink co-simulation platform. The results show that compared with the traditional FTSMC, the improved sliding mode extension control method based on ESO can not only suppress chattering more effectively, but also smoother the response curve. It also has good control effect when there is external disturbance. The effectiveness and robustness of the control strategy are verified.

Funder

National Natural Science Foundation of China

National Engineering Laboratory of High Mobility antiriot vehicle technology

Fundamental Research Funds for the Central Universities

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3