Research on local path planning based on improved RRT algorithm

Author:

Zong Changfu1,Han Xiaojian1,Zhang Dong2,Liu Yang1ORCID,Zhao Weiqiang1,Sun Ming1

Affiliation:

1. State Key Laboratory of Automotive Simulation and Control, College of Automotive Engineering, Jilin University, Changchun, Jilin, China

2. School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore

Abstract

In order to solve the local path planning of self-driving car in the structured road environment, an improved path planning algorithm named Regional-Sampling RRT (RS-RRT) algorithm was proposed for obstacle avoidance conditions. Gaussian distribution sampling and local biasing sampling were integrated to improve the search efficiency in the sampling phase. In the expansion phase, considering the actual size of the vehicle and obstacles, combined with the goal of safety and comfort, the separating axis theorem (SAT) method and vehicle dynamics were used to detect the collision among vehicle and surrounding obstacles in real time. In the post-processing stage, the driver’s driving consensus and path smoothing algorithm were combined to correct the planning path. In order to track the generated path, the MPC tracking algorithm was designed based on the Four-Wheel-Independent Electric Vehicle (FWIEV) model. The co-simulation software platform of CarSim and MATLAB/Simulink was employed to verify the effectiveness and feasibility of the path planning and tracking algorithm. The results show that compared with basic RRT and Goal-biasing RRT, the proposed RS-RRT algorithm has advantages in terms of number of nodes, path length and running time. The generated path can meet the FWIEV dynamics and path tracking requirements.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3