Unmanned Ground Vehicle Path Planning Based on Improved DRL Algorithm

Author:

Liu Lisang12ORCID,Chen Jionghui12ORCID,Zhang Youyuan12,Chen Jiayu12ORCID,Liang Jingrun12ORCID,He Dongwei12

Affiliation:

1. School of Electronic, Electrical Engineer and Physics, Fujian University of Technology, Fuzhou 350118, China

2. Fujian Province Industrial Integrated Automation Industry Technology Development Base, Fuzhou 350118, China

Abstract

Path planning and obstacle avoidance are fundamental problems in unmanned ground vehicle path planning. Aiming at the limitations of Deep Reinforcement Learning (DRL) algorithms in unmanned ground vehicle path planning, such as low sampling rate, insufficient exploration, and unstable training, this paper proposes an improved algorithm called Dual Priority Experience and Ornstein–Uhlenbeck Soft Actor-Critic (DPEOU-SAC) based on Ornstein–Uhlenbeck (OU noise) and double-factor prioritized sampling experience replay (DPE) with the introduction of expert experience, which is used to help the agent achieve faster and better path planning and obstacle avoidance. Firstly, OU noise enhances the agent’s action selection quality through temporal correlation, thereby improving the agent’s detection performance in complex unknown environments. Meanwhile, the experience replay is based on double-factor preferential sampling, which has better sample continuity and sample utilization. Then, the introduced expert experience can help the agent to find the optimal path with faster training speed and avoid falling into a local optimum, thus achieving stable training. Finally, the proposed DPEOU-SAC algorithm is tested against other deep reinforcement learning algorithms in four different simulation environments. The experimental results show that the convergence speed of DPEOU-SAC is 88.99% higher than the traditional SAC algorithm, and the shortest path length of DPEOU-SAC is 27.24, which is shorter than that of SAC.

Funder

Fujian University Industry–University-Research Joint Innovation Project

Fujian University Industry–University Cooperation Science and Technology Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3