Speed regulation control of tractors’ new dual-flow transmission system based on slip rate resistance classification

Author:

Xia Guang12ORCID,Xia Yan12,Tang Xiwen3,Zhao Linfeng2ORCID,Sun Baoqun1

Affiliation:

1. Institute of Automotive Engineering, Hefei University of Technology, Hefei, China

2. School of Automotive and Traffic Engineering, Hefei University of Technology, Hefei, China

3. College of Electronic Engineering, National University of Defense Technology, Hefei, China

Abstract

Fluctuations in operation resistance during the operating process lead to reduced efficiency in tractor production. To address this problem, the project team independently developed and designed a new type of hydraulic mechanical continuously variable transmission (HMCVT). Based on introducing the mechanical structure and transmission principle of the HMCVT system, the priority of slip rate control and vehicle speed control is determined by classifying the slip rate. In the process of vehicle speed control, the driving mode of HMCVT system suitable for the current resistance state is determined by classifying the operation resistance. The speed change rule under HMT and HST modes is formulated with the goal of the highest production efficiency, and the displacement ratio adjustment surfaces under HMT and HST modes are determined. A sliding mode control algorithm based on feedforward compensation is proposed to address the problem that the oil pressure fluctuation has influences on the adjustment accuracy of hydraulic pump displacement. The simulation results of Simulink show that this algorithm can not only accurately follow the expected signal changes, but has better tracking stability than traditional PID control algorithm. The HMCVT system and speed control strategy models were built, and simulation results show that the speed control strategy can restrict the slip rate of driving wheels within the allowable range when load or road conditions change. When the tractor speed is lower than the lower limit of the high-efficiency speed range, the speed change law formulated in this paper can improve the tractor speed faster than the traditional rule, and effectively ensure the production efficiency. The research results are of great significance for improving tractor’s adaptability to complex and changeable working environment and promoting agricultural production efficiency.

Funder

national natural science foundation of china

National key R&D projects

Major Special Projects in Anhui Province

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3