Optimization and Analysis of Clutch Switching Timing for Hybrid Tractors Equipped with Hydraulic Mechanical Combined Transmission

Author:

Zhu Zhen123,Sheng Jie1,Zhang Hongwei2,Wang Dehai2,Chen Long1

Affiliation:

1. Automotive Engineering Research Institute, Jiangsu University, Zhenjiang 212013, China

2. National Key Laboratory of Special Vehicle Design and Manufacturing Integration Technology, Baotou 014030, China

3. Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China

Abstract

The working environment of tractors is harsh and the working conditions are very complicated. To cope with this complex and changeable working environment, this paper presents a hybrid tractor powertrain loaded with hydraulic mechanical combined transmission (HMCVT). The powertrain can switch modes according to different operating environments. During mode switching, impact loads can cause wear and even damage to the transmission components. Interrupting the power transmission will reduce the tractor’s operational efficiency. In this paper, the orthogonal experimental range analysis method was proposed to optimize the quality of mode switching. Mode switching involves interactions between clutches. Orthogonal table L16 (215) was selected to design the orthogonal table head. SimulationX was used for simulation. Employing MINITAB range analysis yielded the optimal results. The simulations indicated a reduction in the output shaft’s velocity drop amplitude from 17.647% to 6.591%. The dynamic load coefficient decreased from 2.743 to 1.857. The impact strength was reduced from 14.125 to 5.67 m/s3. The switching time was reduced from 2.13 to 1.71 s. We built a model-in-the-loop (MIL) test platform to validate the results. The MIL test results were compared with the simulation results. Our findings indicate a degree of discrepancy between the simulated and the experimental results, yet the overall trends remain largely consistent. The correctness of the optimal scheme obtained from the orthogonal experiment is verified. This study provides a theoretical basis for the optimization of powertrain mode switching in hybrid tractors equipped with HMCVT.

Funder

Open Foundation of the National Key Laboratory of Special Vehicle Design and Manufacturing Integration Technology

Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3