Research on interaction law of longitudinal/lateral slip of mountain tractor based on tire-soil model

Author:

Han Bing12ORCID,Dong Hao3,Du Xianxu12,Zhang Zepeng12,Li Zhen12,Mao Enrong12,Zhu Zhongxiang12

Affiliation:

1. College of Engineering, China Agricultural University, Beijing, China

2. Key Laboratory of Soil-Machine-Plant System Technology, MOA, Beijing, China

3. State Key Laboratory of Power System of Tractor, Luoyang, China

Abstract

When the mountain tractor is along the slope contour operation, the driving wheel will cause a longitudinal or lateral slip due to complex driving conditions. In order to investigate the influence law between the longitudinal slip, lateral slip, and deflection slip, the parametrically modified wheel-soil model, dynamics model, and motion trajectory model were established, and the tractor lateral slope simulation model was built based on MATLAB/Simulink and CarSim software. The simulation results show that load traction has the most significant effect on the longitudinal slip rate, lateral slope variation has the most significant impact on the side-slip angle and lateral slip rate, and the lateral slope and load traction together affect the yaw angle and deflection slip rate. When the lateral slope is 15°, the tractor longitudinal speed of 3 and 6 km/h can maintain lateral stability of the longitudinal slip rate of 0.39 and 0.25, respectively. In order to verify the accuracy of the simulation model, the test platform was built. The results show that the average errors of the absolute values of left longitudinal slip rate, right longitudinal slip rate, yaw angle, and side-slip angle are 14.47%, 13.06%, 12.27%, and 11.04%, respectively. To sum up, the extreme driving conditions of the tractor will aggravate the longitudinal slip of the driving wheel, which in turn affects the lateral slip and deflection slip, and should be controlled to avoid tractor instability.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3