Affiliation:
1. Concordia University, Montreal, Quebec, Canada
Abstract
Knowledge of tire–road friction coefficient (TRFC) is valuable for autonomous vehicle control and design of active safety systems. This paper investigates TRFC estimation on the basis of longitudinal vehicle dynamics. A two-stage TRFC estimation scheme is proposed that limits the disturbances to the vehicle motion. A sequence of braking pressure pulses is designed in the first stage to identify desired minimal pulse pressure for reliable estimation of TRFC with minimal interference with the vehicle motion. This stage also provides a qualitative estimate of TRFC. In the second stage, tire normal force and slip ratio are directly calculated from the measured signals, a modified force observer based on the wheel rotational dynamics is developed for estimating the tire braking force. A constrained unscented Kalman filter (CUKF) algorithm is subsequently proposed to identify the TRFC for achieving rapid convergence and enhanced estimation accuracy. The effectiveness of the proposed methodology is evaluated through CarSim™-MATLAB/Simulink™ co-simulations considering vehicle motions on high-, medium-, and low-friction roads at different speeds. The results suggest that the proposed two-stage methodology can yield an accurate estimation of the road friction with a relatively lower effect on the vehicle speed.
Funder
Natural Sciences and Engineering Research Council of Canada
Subject
Mechanical Engineering,Aerospace Engineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献