Coordinated control and torque distribution of differential steering and anti-skid driving of distributed drive electric vehicle considering stability

Author:

Jinfang Hu1ORCID,Boyang Zhang1ORCID,Hongbo Wang1ORCID,Linfeng Zhao1ORCID,Ping Jiang1

Affiliation:

1. School of Automotive and Transportation Engineering, Hefei University of Technology, Hefei, China

Abstract

Differential steering is a unique steering technology for distributed drive vehicles, which cannot only be applied to steering power, but also be used as a backup steering scheme for distributed drive vehicles. When the road adhesion conditions are poor, differential steering will lead to wheel slip, reduce the tire lateral force margin, and then affect the vehicle stability. To solve this issue, it is necessary to integrate the differential steering and anti-skid drive control. In this paper, the four-wheel distributed drive electric vehicle (DDEV), tire and wheel dynamics models are firstly established. Then the coordinated control strategy is proposed for anti-skid driving and differential steering of DDEV, where a neural network is adopted for the weights regulation of the two controllers. Next, an improved slip rate estimation method avoiding the calculation of vehicle speed is proposed which can reduce the error when the wheel angular acceleration is less than zero. Then, the slip rate fuzzy threshold controller is designed to control the wheel slip rate, and the feed forward-feedback differential torque controller is designed to obtain the differential torque required in steering. Considering the vehicle stability, the torque distribution adopts the quadratic programing method and combines the constraints of wheel slip rate and tire load rate to optimize the distribution of each wheel’s driving torque. Finally, the joint simulation and hardware-in-the-loop (HIL) are carried out to verify the effectiveness of the proposed improved slip rate estimation method and control strategy. The results show that the calculation error is reduced to 5.13% with the improved slip rate estimation results, and the superiority of proposed control method is verified by both simulation and HIL test.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3