Affiliation:
1. National Engineering Laboratory for Highway Maintenance Equipment, Chang’an University, Xi’an, China
2. Henan Gao Yuan Maintenance Technology of Highway Co., Ltd., Xinxiang, China
Abstract
To address the comfort of an electric vehicle, a coupling mechanism between mechanical friction braking and electric regenerative braking was studied. A cooperative braking system model was established, and comprehensive simulations and system optimizations were carried out. The performance of the cooperative braking system was analyzed. The distribution of the braking force was optimized by an intelligent method, and the distribution of a braking force logic diagram based on comfort was proposed. Using an intelligent algorithm, the braking force was distributed between the two braking systems and between the driving and driven axles. The experiment based on comfort was carried out. The results show that comfort after optimization is improved by 76.29% compared with that before optimization by comparing RMS value in the time domain. The reason is that the braking force distribution strategy based on the optimization takes into account the driver’s braking demand, the maximum braking torque of the motor, and the requirements of vehicle comfort, and makes full use of the braking torque of the motor. The error between simulation results and experimental results is 5.13%, which indicates that the braking force’s distribution strategy is feasible.
Funder
national key research and development program of china
Scientific and Technological Project of Department of Transport of Shaanxi Province
Special Fund for Basic Scientific Research of Central Colleges, Chang’an University
Subject
Mechanical Engineering,Aerospace Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献