Non-linear tyre model–based non-singular terminal sliding mode observer for vehicle velocity and side-slip angle estimation

Author:

Li Boyuan12ORCID,Du Haiping2,Li Weihua3,Zhang Bangji1

Affiliation:

1. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, China

2. School of Electrical, Computer and Telecommunications Engineering, University of Wollongong Australia, Wollongong, NSW, Australia

3. School of Mechanical, Material and Mechatronic Engineering, University of Wollongong Australia, Wollongong, NSW, Australia

Abstract

Vehicle velocity and side-slip angle are important vehicle states for the electronic stability programme and traction control system in vehicle safety control system and for the control allocation method of electric vehicles with in-wheel motors. This paper proposes an innovative side-slip angle estimator based on the non-linear Dugoff tyre model and non-singular terminal sliding mode observer. The proposed estimation method based on the non-linear tyre model can accurately present the tyre’s non-linear characteristics and can show advantages over estimation methods based on the linear tyre model. The utilised Dugoff tyre model has a relatively simple structure with few parameters, and the proposed non-linear observer can be applied in various vehicle tyres and various road conditions. Precise determination of the Dugoff tyre model parameters is not required and the proposed observer can still perform good estimation results even though tyre parameters and the tyre–road friction coefficient are not accurate. The proposed non-singular terminal sliding mode observer can achieve fast convergence rate and better estimation performance than the traditional sliding mode observer. At the end of this paper, simulations in various conditions are presented to validate the proposed non-linear estimator.

Funder

Open Research Fund Program of the State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University

Australian Research Council’s Discovery Projects funding scheme

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3