Hardware-in-the-loop simulation of pressure-difference-limiting modulation of the hydraulic brake for regenerative braking control of electric vehicles

Author:

Lv Chen1,Zhang Junzhi1,Li Yutong1,Sun Dongsheng1,Yuan Ye1

Affiliation:

1. State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing, People’s Republic of China

Abstract

Because of its significant impact on the cooperative regenerative braking performance of electrified vehicles, the modulation effect of a hydraulic brake is of great importance. To improve the hydraulic brake control performance further, a novel pressure-difference-limiting control method for hydraulic pressure modulation based on on–off solenoid valves is proposed. The linear relationship between the coil current and the pressure difference across the valve is obtained. The characteristics of pressure-difference-limiting modulation are simulated and analysed. Then, a cooperative regenerative braking control algorithm based on the pressure-difference-limiting modulation of the hydraulic brake is designed. Hardware-in-the-loop tests of the algorithm under typical braking procedures are carried out. The test results demonstrate the validity and feasibility of the developed regenerative braking control algorithm and indicate that the proposed pressure-difference-limiting modulation method, which has an advantage over the conventional control based on a pulse-width-modulated signal with respect to the control accuracy of the hydraulic brake pressure, has great potential to improve the braking performance of a vehicle.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Review of One-Box Electro-Hydraulic Braking System: Architecture, Control, and Application;Sustainability;2024-01-25

2. Comprehensive wheel cylinder pressure estimation based on systematic hydraulic control unit model;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2024-01-09

3. A Review of Automobile Brake-by-Wire Control Technology;Processes;2023-03-24

4. Modeling, simulation, and experiments on waste kinetic energy utilization;Energy Reports;2022-11

5. Hardware-in-the-Loop Testing of a Hybrid Brake-by-Wire System for Electric Vehicles;SAE International Journal of Vehicle Dynamics, Stability, and NVH;2022-10-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3