Affiliation:
1. State Key Laboratory of Automotive Safety and Energy, Tsinghua University, People’s Republic of China
Abstract
With the aims of regeneration efficiency and brake comfort, three different control strategies, namely the maximum-regeneration-efficiency strategy, the good-pedal-feel strategy and the coordination strategy for regenerative braking of an electrified passenger car are researched in this paper. The models of the main components related to the regenerative brake and the frictional blending brake of the electric passenger car are built in MATLAB/Simulink. The control effects and regeneration efficiencies of the control strategies in a typical deceleration process are simulated and analysed. Road tests under normal deceleration braking and an ECE driving cycle are carried out. The simulation and road test results show that the maximum-regeneration-efficiency strategy, which causes issues on brake comfort and safety, could hardly be utilized in the regenerative braking system adopted. The good-pedal-feel strategy and coordination strategy are advantageous over the first strategy with respect to the brake comfort and regeneration efficiency. The fuel economy enhanced by the regenerative braking system developed is more than 25% under the ECE driving cycle.
Subject
Mechanical Engineering,Aerospace Engineering
Cited by
133 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献