Affiliation:
1. KAMAZ Innovation Center
2. Moscow Polytechnic University
Abstract
BACKGROUND: As fuel costs are among the significant ones in vehicle operation, it is promising to use vehicle with electric drivetrains, such as battery electric vehicles, which make it possible to reduce these costs. The main key feature of them is mileage at one charge. In order to maximize this feature, designers are working on implementing more advanced energy sources with higher capacity and reducing energy transfer losses from the energy source to the driving wheels. In this path, electric drive is the main source of energy loss. Therefore, it is important not only to use more advanced electric drivetrains, but also to improve control algorithms. For the sake of this, it is necessary to define set points of demanded torque from the engine using only the accelerator pedal taking into account motion velocity, other conditions and vehicle performance. Implementation of this law helps driver to reduce energy consumption, as the vehicle is capable of moving using its inertia (free running) and using regenerative braking at maximum with minimal activity of main braking system.
AIM: Study of operation and efficiency of the algorithm of definition of traction and regenerative torque set points for the traction electric drive, definition of the free running mode depending on motion velocity and definition of the accelerator pedal position using methods of mathematical modeling of vehicle dynamics.
METHODS: The study of operation and efficiency of the law of definition of traction and regenerative torque set points for the traction electric drive and definition of the free running mode was conducted in the MATLAB/Simulink software package.
RESULTS: The paper contains fundamentals of building the algorithm of definition of traction and regenerative torque set points for the traction electric drive and definition of the free running mode, results of virtual study of operation and efficiency of this algorithm for driving a vehicle in the MATLAB/Simulink with virtual conditions relevant to the real ones.
CONCLUSIONS: The practical value of the study lies in ability of using the proposed law of definition of traction and regenerative torque set points for the traction electric drive and definition of the free running mode for development of control systems for traction drive of transport vehicles in order to increase their energy efficiency.
Reference21 articles.
1. Characteristics of the KAMAZ 6282 electric bus. [internet]. Naberezhnye Chelny. Accessed: 15.10.2022. Available from: https://kamaz.ru/upload/bus/Электробус%20KAMAZ-6282.pdf
2. Klimov AV, Chirkin VG, Tishin AM. About some design features and types of transport traction electric motors. Avtomobilnaya promyshlennost. 2021;7:15–21. (In Russ). EDN: FEETSV
3. Klimov AV, Tishin AM, Chirkin VG. Various types of traction synchronous motors for urban operating conditions. Gruzovik. 2021. № 6. С. 3–7. (In Russ). EDN: ZTRMYW
4. Control signal algorithm of the accelerator pedal providing an effective energy consumption by an electrobus traction gear
5. Regenerative braking control algorithm using the accelerator pedal