Characterisation and optimisation of a real-time diesel engine model

Author:

Dowell Peter G1,Akehurst Sam1,Burke Richard D1

Affiliation:

1. Powertrain and Vehicle Research Centre, Department of Mechanical Engineering, University of Bath, Bath, UK

Abstract

Accurate real-time engine models are an essential step to allow the development of control algorithms in parallel to the development of engine hardware using hardware-in-the-loop applications. A physics-based model of the engine high-pressure air path and combustion chamber is presented. The model was parameterised using data from a small set of carefully selected operating conditions for a 2.0 l diesel engine. The model was subsequently validated over the complete engine operating map with exhaust gas recirculation and without exhaust gas recirculation. A high level of fit was achieved with R2 values above 0.94 for the mean effective pressure and above 0.99 for the air flow rate. The model run time was then reduced for real-time application by using forward differencing and single-precision floating-point numbers and by calculating the in-cylinder prediction for only a single cylinder. A further improvement of 25% in the run time was achieved by improving the submodels, including the strategic use of one-dimensional and two-dimensional look-up tables with optimised resolution. The model exceeds the performance of similar models in the literature, achieving a crank angle resolution of 0.5° at 4000 r/min. This simulation step size still yields good accuracy in comparison with a crank angle resolution of 0.1° and was validated against the experimental results from a New European Driving Cycle. The real-time model allows the development of control strategies before the engine hardware is available, meaning that more time can be spent to ensure that the engine can meet the performance and the emissions requirements over its full operating range.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Establishment of a Real-Time Simulation of a Marine High-Pressure Common Rail System;Energies;2021-09-02

2. Real-time engine model development based on time complexity analysis;International Journal of Engine Research;2021-08-16

3. Design of a virtual test cell based on GMDH-type neural network for a heavy-duty diesel engine;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2020-09-30

4. Experiments and modeling of a dual-mode, turbulent jet ignition engine;International Journal of Engine Research;2019-09-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3