Design of a virtual test cell based on GMDH-type neural network for a heavy-duty diesel engine

Author:

Ghanaati Ali1ORCID,Sjöblom Jonas1,Faghani Ethan2

Affiliation:

1. Division of Combustion and Propulsion Systems, Mechanics and Maritime Sciences, Chalmers University of Technology, Gothenburg, Sweden

2. Volvo AB, Volvo Penta, Gothenburg, Sweden

Abstract

The engine development process faces big challenges from new strict emission regulations in addition to the need for fuel efficiency improvements. The Software-in-the-Loop (SiL) and Hardware-in-the-Loop (HiL) environments decreases the required time during engine development, calibration, verification, and validation of the product. An accurate and easy to build dyno-engine model with real-time operational ability is required for this purpose. Artificial Neural Networks (ANN) have shown ability to model dynamic and complex systems like internal combustion engines. In this paper, the Group Method of Data Handling (GMDH) algorithm was utilized to build an ANN model of a heavy-duty diesel engine. One objective is to reduce the amount of manual labor on the results during the ANN model development process. The GMDH algorithm is a self-organizing process that will find the system laws and optimize the model structure automatically in one iteration. The GMDH model results were compared with a model developed by Levenberg-Marquardt Backpropagation (LM-BP) algorithm. The ANN models used actuator signals from an Engine Management System (EMS) to simulate the engine operation parameters. As revealed by the simulation results, the ANN models successfully predicted engine torque, fuel flow, and NOx concentration. The GMDH model as a self-organized model reduced lead time, had slightly higher transient cycle accuracy, had fewer inconsistent predictions, and demonstrated better extrapolation capability. The prediction accuracy for transient operation was improved by shifting the predicted value by calculating time delay and a decrease of 76.66% for fuel flow and 66.51% for NOX concentration in model accuracy were achieved. The GMDH dyno-engine model can be effectively applied as a virtual test cell instrument for testing, calibration, and optimization purposes.

Funder

Chalmers University of Technology and Volvo Penta

Virtual Engine Calibration

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3