Global-guidance chaotic multi-objective particle swarm optimization method for pneumatic suspension handling and ride quality enhancement on the basis of a thermodynamic model of a full vehicle

Author:

Ghorbany Mohammad1,Ebrahimi-Nejad Salman1ORCID,Mollajafari Morteza2ORCID

Affiliation:

1. Vehicle Dynamical Systems Research Laboratory, School of Automotive Engineering, Iran University of Science and Technology, Tehran, Iran

2. Vehicle Electrical and Electronic Research Laboratory, School of Automotive Engineering, Iran University of Science and Technology, Tehran, Iran

Abstract

In this paper, the parameters of the validated suspension system model of a full-vehicle are tuned through design sensitivity analyses, and then Multi-Objective Particle Swarm Optimization (MOPSO) is used to enhance vehicle ride comfort, which is the vertical whole-body vibrations, and handling features, that is, roll motion and road holding, simultaneously. The parameters of this thermodynamic-based pneumatic suspension system model are comprised of the air spring reservoir volume, orifice resistance, initial volume, and pressure of the pneumatic springs. To enhance the convergence rate, computational times, and diversity of the swarm particles, we have incorporated chaotic dynamics into the MOPSO using the Logistic Map chaotic method to initialize the population and also employed the leader-based global guidance techniques to conduct the potential solutions in each iteration. The analysis of the proposed modeling and optimization results show that the suspension system has been reasonably boosted in terms of vehicle handling and ride comfort. Quantitatively, the RMS acceleration and pitch angle has been reduced by about 71% and 57%, respectively, showing a substantial improvement in passenger comfort. Furthermore, the proposed approach caused an increase in tire road-holding force by about 148% and a reduction of roll angle by 33% which results in an enhancement in vehicle handling, boosting vehicle driving safety.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3