The control design of transverse interconnected electronic control air suspension based on seeker optimization algorithm

Author:

Cao Kai1,Li Zhiqiang1,Gu Yili1,Zhang Liuyang1,Chen Liqing1ORCID

Affiliation:

1. College of Engineering, Anhui Agricultural University, Hefei, China

Abstract

In this paper, in the light of the problems of the traditional air suspension PID controller in the process of body height adjustment, such as the adjustment time is too long, the overshoot phenomenon is obvious, and the control parameters cannot be adjusted in real time, a PID transverse interconnected electronic control air suspension(TIECAS) system controller based on seeker optimization algorithm (SOA) is designed, the proportion factor of PID is optimized by crowd search algorithm and get the optimal solution of PID controller parameters. The control system model is built in [Formula: see text] simulation software. The simulation results show that the PID lateral interconnected air suspension controller based on SOA has faster response and avoids overshoot than the traditional PID controller. The control system was tested on a self-developed test vehicle with TIECAS structure. The test results show that the root mean square(RMS) values of the roll angle and pitch angle of the test vehicle are reduced from [Formula: see text] and [Formula: see text] before control to [Formula: see text] and [Formula: see text], respectively, by [Formula: see text] and [Formula: see text]. The RMS values of the vertical acceleration of the center of mass after control are reduced by [Formula: see text] and [Formula: see text] compared with that without control, effectively improve the ride comfort and operation stability of the vehicle, The research results provide a new idea for the control of the vehicle transverse interconnected electronic air suspension system.

Funder

Natural Science Fund Project in Anhui Province

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3