Development of an optimized game controller for energy saving in a novel interconnected air suspension system

Author:

Nazemian Hossein1ORCID,Masih-Tehrani Masoud1ORCID

Affiliation:

1. Vehicle Dynamical Systems Research Laboratory, School of Automotive Engineering, Iran University of Science and Technology, Tehran, Iran

Abstract

In this study, the focus is on reducing the energy that is consumed by a compressor for providing high air pressure in the reservoir. A new air suspension configuration is presented that is titled active interconnected air suspension with outsourced air pressure. In this configuration, a compressor is used to charge the tank; meanwhile, the air springs are connected. For minor excitation, first, the air flows between air springs to control roll angle and height adjustment. If the situation of body position gets worse, the compressed air tank compensates to keep the body not generating roll angle and bounce. This methodology has a benefit. This configuration conserves compressed air in the tank in minor road elevation. The optimized controllers are designed to control roll angle and bounce, but they determine the outsourced air mass flow rate. For switching between interconnection and outsourced mode, there are some rules defined based on game theory for a trade-off between high dynamical performance quality of the vehicle and reduction of energy consumption. The optimization is done on the rules to keep both aspects minimum as much as possible. A three-axle heavy truck is used, and its performance is under discussion on an uneven rough road. Roll angle is improved progressively in novel air suspension configuration, and the energy consumption is reduced. In the default condition, the roll angle is improved 72% from the passive case and 39% from the conventional configuration. Furthermore, the energy consumption optimized version reduces 14% from the non-optimized case and 46% from the outsourced mode. By importing road power spectral density type E and type G, as the short domain and high-frequency vibrations, to two sides of the truck, it is inferred that the vehicle could remain on interconnection mode entirely without using the compressor.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3