Effects of Mechanical and Electrical Topologies on Piezoelectric Stacked Energy Harvesting in Vehicle Suspensions

Author:

Li Yang12ORCID,Wang Ruoyu1,Wan Zhao1,Chen Ming12,Liang Guijie3

Affiliation:

1. School of Automotive and Traffic Engineering, Hubei University of Arts and Science, 441000 Xiangyang, Hubei, China

2. Hubei Key Laboratory of Power System Design and Test for Electrical Vehicle, 441000 Xiangyang, Hubei, China

3. School of Physics and Electronic Engineering, Hubei University of Arts and Science, 441000 Xiangyang, Hubei, China

Abstract

The choice of mechanical and electrical topologies can affect piezoelectric energy harvesting efficiency, but the problem of achieving high-efficiency energy conversion in energy harvesters stacked as cantilevers has not been perfectly solved. This study focuses on the topology of piezoelectric elements in a stacked vehicle suspension vibration energy harvesting device. Through theoretical analysis, the stress expressions of the excited and driven elements are derived. The stress of the piezoelectric elements is affected by the positions of the connection and excitation points. A stress model was established for a four-piece piezoelectric element connected by a thin light rod in ANASYS. The simulation results show that the average stress in the piezoelectric bending element model is maximum when the excitation and connection points are located at both ends of the free end. Compared with the middle position of the free end of the piezoelectric element, the average stress of the model is increased by 92.904%. Considering the difference in voltage generated by piezoelectric elements, four kinds of electrical topology are designed and analyzed experimentally. When the driven elements are connected in parallel and then connected in series with the excited element, the output power varied the least with the change of load resistance. The system produces a high power and offers a wide selection of load resistors. When the load is 26 kΩ, a single set of four piezoelectric elements produces 86.407 mW of output power.

Funder

Hubei Provincial Department of Education

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3