Optimal Control Strategy of Path Tracking and Braking Energy Recovery for New Energy Vehicles

Author:

Zhao Bi,Liu Ruijun,Shi Dapai,Li Shipeng,Cai Qingling,Shen Wencheng

Abstract

In order to further improve the stability of path tracking control and fuel economy of new energy vehicles, an optimal control strategy of path tracking and braking energy recovery is proposed. First, a model predictive controller is designed based on the three-degrees of freedom dynamics model of the vehicle according to the idea of hierarchical control, and a fuzzy yaw torque controller is established with the desired yaw velocity and side slip angle of the mass center as constraints. Second, at high-speed driving conditions, the executive layer of the component distributes the braking torque according to the braking energy recovery control strategy. Finally, the optimal control strategy of path tracking and braking energy recovery is verified by Carsim/Advisor/Simulink software under different driving speeds. The results show that the optimized control strategy can improve the tracking accuracy and driving stability of a vehicle with large curvature turning and further improve the fuel economy of new energy vehicles under the premise of meeting the control requirements.

Funder

Hubei Provincial Department of Education

Science and Technology Department of Hubei Province

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference40 articles.

1. Implementation of the Pure Pursuit Path Tracking Algorithm;Coulter,1992

2. Automatic Steering Methods for Autonomous Automobile Path Tracking;Snider,2011

3. Research on Motion Control Approaches of Autonomous Vehicle in urban Environments;Zhao,2012

4. Design, Analysis, and Experiments of Preview Path Tracking Control for Autonomous Vehicles

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3