Path tracking control of intelligent vehicles via a speed-adaptive MPC for a curved lane with varying curvature

Author:

Guan Longxin12,Liao Pingwei12,Wang Aichun2,Shi Lequan2,Zhang Chao2,Wu Xiaojian12ORCID

Affiliation:

1. School of Advanced Manufacturing, Nanchang University, Nanchang, China

2. Jiangling Motors Co., Ltd, Nanchang, China

Abstract

When driving on a curved lane with varying curvature, human drivers usually make a small range of longitudinal speed adjustments to maintain a yaw response that feels more stable. Taking this type of response as a reference, intelligent vehicles must also make adjustments to their longitudinal speed within a small range during the path tracking process with curvature changes. The current variable curvature path tracking algorithm using model predictive control (MPC) basically assumes that the vehicle moves at a constant speed, which does not match the small-range adjustment of the longitudinal speed and thereby affects the accuracy of path tracking. In this paper, considering the small range of speed variation in the path tracking process, the path and speed decoupling control in Frenet coordinates are used to replace the longitudinal-lateral-yaw complex coupling dynamics control. Meanwhile, considering the problem that the steady-state error of the MPC controller caused by curvature variation in the path tracking process cannot be eliminated, the adaptive weight control (AWC) and adaptive feedforward (AFF) models based on BP neural network (BPNN) data learning are designed to dynamically adjust the lateral error weight and feedforward factors of the MPC controller. As a result, a more accurate path tracking effect is achieved. Simulation results in the joint CarSim-Simulink environment show that the proposed algorithm significantly improves the adaptive capability of the linear MPC controller in response to time-varying conditions and has a higher tracking accuracy.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3