Udwadia–Kalaba theory for the control of bulldozer link lever

Author:

Li Chenming1ORCID,Zhao Han1,Zhen Shengchao12ORCID,Sun Hao12,Shao Ke1

Affiliation:

1. School of Mechanical Engineering, Hefei University of Technology, Hefei, China

2. School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA

Abstract

We propose to apply Udwadia–Kalaba theory to the bulldozer dynamics analysis. The bulldozer system is divided into several subsystems by this approach, which simplifies the modeling process for multi-link mechanism. Based on this approach, the constraints are classified into structure constraints and performance constraints. Structure constraints are used to set up dynamic model without regard for trajectory. Performance constraints are the desired trajectory. Then, according to the equation of motion of the unconstrained system established by Lagrange approach and system constraints which include structure and performance constraints, an explicit, closed-form analytical expression for the control force can be obtained by solving Udwadia–Kalaba equation. We demonstrate that this approach does not need to solve Lagrange multiplier, which is always difficult to obtain. However, for bulldozer link lever system, the initial conditions are difficult to satisfy the constraints in the actual situation. Thus, the problem of initial condition deviation is taken into consideration. In the end, the numerical simulations are done to prove that the trajectory of the bulldozer satisfies the designed one and the real-time forces are conveniently acquired.

Funder

the Fundamental Research Funds For Central Universities

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Natural Science Foundation of Anhui Province

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3