Translational objects dynamic modeling and correction for point cloud augmented virtual reality–based teleoperation

Author:

Ni Dejing1,Song Aiguo1,Wang Sibao2,Li Huijun1,Zhu Chengcheng1

Affiliation:

1. School of Instrument Science & Engineering, Southeast University, Nanjing, China

2. Department of Mechanical Engineering, National University of Singapore, Singapore

Abstract

It is a challenging task for operators to interact with the remote environment without its geometric and dynamic knowledge during teleoperation. In this article, a novel system architecture for implementing the translational object modeling and correction during remote interaction is proposed to reconstruct the haptic interaction and predict the object motion at the local virtual reality–based teleoperation. First, a stress mutation analysis method is proposed for segmenting the translational object motion into static phase, critical phase, and sliding phase. And the static limiting friction is originally estimated in the teleoperation area. Meanwhile, mass-damper-spring model and adapted Karnopp friction model are adopted for dynamic modeling in each phase. Second, a novel adaptive forgetting factor recursive least square method is studied for high-accuracy parameter estimation. With the estimated model parameters, the motion of the translational object is predicted at the master side. Meanwhile, for model consistence between the real and virtual environments, a new correction strategy is used to adaptively update the environment model. According to the experimental results, the translational object can be accurately modeled in real time, and its motion at the master side can be predicted precisely and corrected promptly.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3