Abstract
The involvement of Robots and automated machines in different industries has increased drastically in recent years. Part of this revolution is accomplishing tasks previously performed by humans with advanced robots, which would replace the entire human workforce in the future. In some industries the workers are required to complete different operations in hazardous or difficult environments. Operations like these could be replaced with the use of tele-operated systems that have the capability of grasping objects in their surroundings, thus abandoning the need for the physical presence of the human operator at the area while still allowing control. In this research our goal is to create an assisting system that would improve the grasping of a human operator using a tele-operated robotic gripper and arm, while advising the operator but not forcing a solution. For a given set of objects we computed the optimal grasp to be achieved by the gripper, based on two grasp quality measures of our choosing (namely power grasp and precision grasp). We then tested the performance of different human subjects who tried to grasp the different objects with the tele-operated system, while comparing their success to unassisted and assisted grasping. Our goal is to create an assisting algorithm that would compute optimal grasps and might be integrated into a complete, state-of-the-art tele-operated system.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献