Affiliation:
1. School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai, P. R. China
Abstract
With economic growth, automobiles have become an irreplaceable means of transportation and travel. Tires are important parts of automobiles, and their wear causes a large number of traffic accidents. Therefore, predicting tire life has become one of the key factors determining vehicle safety. This paper presents a tire life prediction method based on image processing and machine learning. We first build an original image database as the initial sample. Since there are usually only a few sample image libraries in engineering practice, we propose a new image feature extraction and expression method that shows excellent performance for a small sample database. We extract the texture features of the tire image by using the gray-gradient co-occurrence matrix (GGCM) and the Gauss-Markov random field (GMRF), and classify the extracted features by using the K-nearest neighbor (KNN) classifier. We then conduct experiments and predict the wear life of automobile tires. The experimental results are estimated by using the mean average precision (MAP) and confusion matrix as evaluation criteria. Finally, we verify the effectiveness and accuracy of the proposed method for predicting tire life. The obtained results are expected to be used for real-time prediction of tire life, thereby reducing tire-related traffic accidents.
Funder
National Natural Science Foundation of China
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献