Use of railway wheel wear and damage prediction tools to improve maintenance efficiency through the use of economic tyre turning

Author:

Muhamedsalih Yousif1ORCID,Stow Julian1ORCID,Bevan Adam1ORCID

Affiliation:

1. Institute of Railway Research, University of Huddersfield, Huddersfield, UK

Abstract

This paper investigates the wear rate and pattern for wheels turned with thin flanges using economic tyre turning. Economic tyre turning refers to the process of turning wheels to a profile that has the same tread shape but a thinner flange than the design case profile, allowing less material to be removed from the wheel diameter during re-profiling. Modern wheel lathes are typically capable of turning such profiles but the GB railway group standards do not currently permit their use. The paper demonstrates how the wheel profile damage model (WPDM) can be used, with a good degree of accuracy, to predict both the magnitude of wheel wear and the worn profile shape of the design and economic tyre turning re-profiled wheels for service mileages exceeding 100,000 miles. The WPDM simulations were run for two typical electric multiple units (one suburban and one intercity train fleet) and a two-axle freight wagon. Additionally, it discusses the calibration methodology used to adjust the wear coefficients contained within the Archard wear model to improve the accuracy of the WPDM simulation results for specific routes and vehicle types. Furthermore, this paper presents the findings of a trial of economic tyre turning on a fleet of intercity trains. The analysis is extended to predict the effect of using economic tyre turning on rail rolling contact fatigue for typical routes and operating conditions using a series of vehicle dynamic simulations. The analysis considers new 56E1 and 60E2 rails together with a selection of worn wheel. The research provides valuable evidence to support a future change to the standards which will allow train operators/maintainers to implement economic tyre turning policies.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3