Abrasion Behaviors of Silica-Reinforced Solution Styrene–Butadiene Rubber Compounds Using Different Abrasion Testers

Author:

Chae Eunji1,Yang Seong Ryong2,Choi Sung-Seen1

Affiliation:

1. Department of Chemistry, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea

2. Hankook Tire & Technology Company, 50 Yuseong-daero, Yuseong-gu, Daejeon 34127, Republic of Korea

Abstract

Solution styrene–butadiene rubber (SSBR) is widely used to improve the properties of tire tread compounds. Tire wear particles (TWPs), which are generated on real roads as vehicles traverse, represent one of significant sources of microplastics. In this study, four SSBR compounds were prepared using two SSBRs with high styrene (STY samples) and 1,2-unit (VIN samples) contents, along with dicyclopentadiene resin. The abrasion behaviors were investigated using four different abrasion testers: cut and chip (CC), Lambourn, DIN, and laboratory abrasion tester (LAT100). The abrasion rates observed in the Lambourn and LAT100 abrasion tests were consistent with each other, but the results of CC and DIN abrasion tests differed from them. The addition of the resin improved the abrasion rate and resulted in the generation of large wear particles. The abrasion rates of STY samples in the Lambourn and LAT100 abrasion tests were lower than those of VIN samples, whereas the values in the CC and DIN abrasion tests were higher than those of VIN samples. The wear particles were predominantly larger than 1000 μm, except for the VIN sample in the DIN abrasion test. However, TWPs > 1000 μm are rarely produced on real roads. The size distributions of wear particles > 1000 μm were 74.0–99.5%, 65.9–93.4%, 7.2–95.1%, and 37.5–83.0% in the CC, Lambourn, DIN, and LAT100 abrasion tests, respectively. The size distributions of wear particles in the Lambourn and LAT100 abrasion tests were broader than those in the other tests, whereas the distributions in the CC abrasion test were narrower. The abrasion patterns and the morphologies and size distributions of wear particles generated by the four abrasion tests varied significantly, attributable to differences in the bound rubber contents, crosslink densities, and tensile properties.

Funder

Ministry of Trade, Industry and Energy, Republic of Korea

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3