A novel analytical model for the thermal behavior of a fiber-reinforced plastic pulley in a front-end accessory drive

Author:

Liu Xingchen1ORCID,Behdinan Kamran1

Affiliation:

1. Advanced Research Lab for Multifunctional Lightweight Structures (ARL-MLS), Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON, Canada

Abstract

This research proposes an innovative model for calculating the temperature distribution of a composite pulley inside a belt drive. The main advantage of the proposed model is a significant reduction in the costs of calculation resources and time. This model adopts two classical theories to determine the heat generation flux and subsequent thermal flow into the pulley. Then, ordinary differential equations are developed in this model according to the irregular geometric structures of a pulley to describe the thermal flow inside this component. Afterward, analytical solutions of the ordinary differential equations are derived to provide final temperature distributions of the pulleys. Moreover, measurements of thermal properties are conducted to reduce the influence of errors. To improve the reliability of the results, experimental temperature measurements were performed on a composite pulley of a designed belt drive system in an engine dynamometer system to validate this analytical model under various operating conditions. The temperature data measured at multiple locations indicate good agreement with the corresponding analytical results. Therefore, the temperature distribution provided by this model can be utilized for the development of high-thermal resistance composite. It can also be used for thermal fatigue simulations of composites under numerous load cases.

Funder

Mitacs

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3