Innovative analytical model for temperature prediction of front-end accessory drive

Author:

Liu Xingchen,Behdinan Kamran

Abstract

AbstractThe front-end accessory drive belt drive system is a critical component in the vehicle engine. To avoid thermal deterioration under static state operating conditions, the thermal distribution for the belt drive system at each condition must be determined in an efficient manner. Due to the numerical approach is not feasible to address this concern because of its high computational cost, this paper proposes a reliable and efficient novel analytical thermal model to achieve this goal. This work develops the state-of-the-art heat transfer ordinary differential equations (ODEs) describing the thermal flow and heat dissipations on the complex structures of pulleys. Then it integrates these ODEs with heat transfer governing equations of the belt and heat exchanges to establish an innovative system of equations that can be solved within a few seconds to provide temperature plots. Moreover, experiments were conducted on a dynamometer to verify the accuracy of the proposed model under a wide range of conditions. The results indicate that the measured temperatures are in good agreement with the corresponding analytical results. Owing to its efficiency, the proposed model can be integrated with other mechanical characterizations of the belt drive system in terms of design, optimization, and thermal fatigue analyses.

Funder

Mitacs

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference49 articles.

1. Kim, H. S., Bae, H. S., Yu, J. & Kim, S. Y. Thermal conductivity of polymer composites with the geometrical characteristics of graphene nanoplatelets. Sci. Rep. 6, 1–9 (2016).

2. Yang, Q. et al. Study of the micro-climate and bacterial distribution in the deadspace of N95 filtering face respirators. Sci. Rep. 8, 1–13 (2018).

3. Liu, X. & Behdinan, K. Analytical-numerical model for temperature prediction of a serpentine belt drive system. Appl. Sci. 10, 2709 (2020).

4. Gerbert, G. Force and slip behaviour in V-belt drives. Mechanical Engineering Series 67, (Finnish Academy of Technical Sciences, 1972).

5. Manin, L., Liang, X. & Lorenzon, C. Power losses prediction in poly-v belt transmissions: application to front engine accessory drives. in International Gear Conference 2014: 26th–28th August 2014, Lyon 1162–1171 (Elsevier, 2014).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3