Affiliation:
1. School of Electronics and Information, Northwestern Polytechnical University, Xi’an, China
2. School of Power and Energy, Northwestern Polytechnical University, Xi’an, China
Abstract
Fault diagnosis is important for the maintenance of machinery equipment. Due to the randomness and fuzziness of fault, the relationship between fault types and their characteristics are complicated. Therefore, the determination of fault type is a challenging part of machinery fault diagnosis with the traditional method. To tackle this problem, a fault diagnosis approach based on the technique for order performance by similarity to ideal solution with Manhattan distance is presented in this article. First, the similarity measure between the fault model and the detection sample is constructed based on the Manhattan distance. Then, the similarity is transformed into intuitionistic fuzzy set and the generated intuitionistic fuzzy set is fused by the intuitionistic fuzzy weighted averaging operator. On this basis, the technique for order performance by similarity to the ideal solution approach is utilized to obtain the final rank to ascertain the fault type. The proposed method can handle an intricate relationship between multiple fault types and their various fault characteristics and better express uncertain information. Finally, a fault diagnosis example of the machine rotor and comparative study are conducted to illustrate the application and the effectiveness of the proposed method.
Funder
Natural Science Basic Research Plan in Shaanxi Province of China
National Natural Science Foundation of China
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献