Interactive Allocation of Water Pollutant Initial Emission Rights in a Basin under Total Amount Control: A Leader-Follower Hierarchical Decision Model

Author:

Yu Qianwen,Sun Zehao,Shen Junyuan,Xu Xia,Chen XiangnanORCID

Abstract

The initial emission rights allocation is the key measure to achieve the goal of total amount control and deepen the emission trading system. Although many studies have focused on the modeling of initial emission rights allocation, such as using game theory and multi-objective optimization methods, few studies have observed the hierarchical relationship of mutual interference and restriction between watershed management agency and local governments in each subarea during allocation. This relationship directly affects the rationality of the results of regional emission rights allocation. In this study, a leader-follower hierarchical decision model (LFHDM) for allocating initial emission rights in a basin is developed. Based on the bilevel programming approach, the model simulates the interactive decision-making process between the watershed management agency of the upper-level model (LFHDM-U) and the local government of the lower-level model (LFHDM-L) in the allocation under total amount control. A case study of China’s Yellow River Basin is conducted to demonstrate the feasibility and practicality of the model. Findings reveal that, compared with the single-level model, the developed LFHDM has higher satisfaction with the allocation scheme. Under different scenarios, the overall satisfaction of the configuration schemes of COD and NH3-N in each province and autonomous region remains above 0.9. In addition, the allocation volumes of COD and NH3-N in each province of the Yellow River Basin in planning year increase with the enhancement of allowable assimilative capacity of water bodies, but the interval gap of satisfaction with allocation schemes gradually narrows. It shows that when the allowable assimilation capacity of a water body is low, the decision-making of the allocation scheme needs to be more cautious. Moreover, for the Yellow River Basin, apart from Qinghai and Sichuan, the task of reducing water pollutants in other provinces in the next few years is very arduous. The average reduction of total COD and NH3-N in the basin is about 48% and 46%, respectively.

Funder

Ministry of Education of the People’s Republic of China

General Project of Philosophy and Social Science Research in Colleges and Universities in Jiangsu Province

Anhui Provincial Education Department Humanities Key Fund

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference66 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3