Canonical variate residual analysis for industrial processes fault detection

Author:

Li Yuting1ORCID,Li Fei12ORCID,Liu Xiaoqiang1ORCID

Affiliation:

1. School of Electrical and Information Engineering Anhui University of Technology Maanshan China

2. Key Laboratory of Metallurgical Emission Reduction and Comprehensive Utilization of Resources of the Ministry of Education Anhui University of Technology Maanshan China

Abstract

AbstractWith the rapid development of intelligent integration in industrial processes, a challenge emerges. Early failures cannot be detected in a timely manner, potentially leading to significant financial losses. While traditional canonical variate analysis (CVA) methods are effective for dynamic process monitoring, they may lack the flexibility required for early fault detection. To address this challenge, a fault detection method based on canonical variate residual analysis (CVRA) is proposed. CVRA introduces a distinctive residual statistic that preserves critical information about the data. It places heightened focus on the primary components of the data, capturing core features of system changes and enhancing sensitivity to early anomalies. Additionally, by incorporating the geometric properties of the Manhattan distance, it mitigates statistical data errors, thereby improving detection accuracy. Simulation results validate the method's effectiveness in the Tennessee Eastman (TE) process. Furthermore, the successful application of the three‐phase flow facility provides a benchmark for evaluation using real process data.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Anhui Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3