How does ankle push-off balance the walking speed and energy efficiency of planar biped robots?

Author:

Ji Qiaoli1ORCID,Qian Zhihui1,Ren Lei12,Ren Luquan1

Affiliation:

1. Key Laboratory of Bionic Engineering, Jilin University, Changchun, China

2. School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester, UK

Abstract

Ankle push-off is defined as the phase in which muscle-tendon units about the ankle joint generate a burst of positive power during the step-to-step transition in human walking. The dynamic walking of a biped robot can be effectively realized through ankle push-off. However, how to use ankle push-off to balance the walking speed and energy efficiency of biped robots has not been studied deeply. In this study, the effects of the step length (the inter-leg angle is 40°, 50°, and 60°), torque and timing of ankle push-off on the walking speed and energy efficiency of biped robots were studied. The results show that when the step length is 50°, the push-off torque is 30 N· m and the corresponding push-off timing occurs at 43% of the gait cycle, the simulated robot obtains a highly economical walking gait. The corresponding maximum normalized walking speed is 0.40, and the minimum mechanical cost of transport is 2.25. To acquire a more economical walking gait of biped robots, the amount of ankle push-off and the push-off timing need to be coordinated. The purpose of this study is to provide a reference for the influence of ankle push-off on the motion performance of biped robots.

Funder

National Natural Science Foundation of China

National Key R and D Program of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3