Canards interference on the Magnus effect of a fin-stabilized spinning missile

Author:

Yin Jintao1,Wu Xiaosheng1ORCID,Lei Juanmian1,Lu Tianyu1,Liu Xiaodong1

Affiliation:

1. School of Aerospace Engineering, Beijing Institute of Technology, Beijing, China

Abstract

Reynolds-averaged simulations of flow over spinning finned missiles with and without canards were carried out at Ma = 0.6, 0.9, 1.5, and 2.5; α = 4°, 8°, and 12.6°; and [Formula: see text] to investigate different mechanisms of the Magnus effect. An implicit dual-time stepping method and the [Formula: see text] transition model were combined to solve the unsteady Reynolds-averaged Navier–Stokes equations. Grid independence study was conducted, and the computed results were compared with archival experimental data. The transient and time-averaged lateral force coefficients were obtained, and the flow field structures were compared at typical rolling angles. The results indicate that in subsonic conditions, the canards interference intensifies the asymmetrical distortion of the body surface boundary layer and flow separation at different angles of attack, doubling the absolute value of the time-averaged body lateral force; the wash flow effect strengthens on the leeward tail due to the canards interference, increasing its time-averaged lateral force; in supersonic conditions, the shock and expansion waves induced by canards, the vortex system, and the flow separation are responsible for the fluctuation of the body lateral force; the direction of the canard induced wash flow alters as angle of attack increases, increasing first and then decreasing the time-averaged tail lateral force.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3