Numerical investigation of aerodynamic characteristics of free-spinning tail projectile with canards roll control

Author:

Zhang Jiawei1,Lei Juanmian1ORCID,Niu Jianping1

Affiliation:

1. School of Aerospace Engineering, Beijing Institute of Technology, Beijing, P.R. China

Abstract

To reduce aerodynamic coupling between the canards and the tail fins of a canard-controlled projectile, the afterbody of the projectile is decoupled from the forebody by a bearing structure, namely, a free-spinning tail. A series of numerical simulations was conducted for different angles of attack using NASA’s canard-controlled projectile with a free-spinning tail. The results were then compared with the wind tunnel test data. The spin rate of the free-spinning tail shows that, with the canard roll control, the tail section will rotate at lower angles of attack and “lock-in” at higher ones, demonstrating nonlinearization between the rotating rate and the angle of attack. According to a flow structure analysis, the circular flow velocity induced by canards is responsible for the non-linear characteristics of the tail. Moreover, the change in position of the circular flow velocity results in a reverse of the rolling moment of the “+” fixed tail projectile at different angles of attack. Furthermore, a comparison of the aerodynamic characteristics of the fixed (“+” and “x”) and free-spinning tail configurations proves that when the tail is spinning, all the aerodynamic coefficients of the free-spinning tail projectile are between those of the “+” and “x” fixed tail projectiles. The longitudinal difference in aerodynamic characteristics is related to the rolling angle, whereas the lateral difference is related to both the rolling angle and rotation rate. When the tail section “locks-in,” different rolling angles lead to different characteristics in both the longitudinal and lateral directions.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3