Analysis of the Magnus Moment Aerodynamic Characteristics of Rotating Missiles at High Altitudes

Author:

Xu Yihang1ORCID,Chen Shaosong1ORCID,Zhou Hang1

Affiliation:

1. Department of Weapons Science and Technology, Nanjing University of Science and Technology, Nanjing, China

Abstract

The Magnus moment characteristics of rotating missiles with Mach numbers of 1.3 and 1.5 at different altitudes and angles of attack were numerically simulated based on the transition SST model. It was found that the Magnus moment direction of the missiles changed with the increase of the angle of attack. At a low altitude, with the increase of the angle of attack, the Magnus moment direction changed from positive to negative; however, at high altitudes, with the increase of the angle of attack, the Magnus moment direction changed from positive to negative and then again to positive. The Magnus force direction did not change with the change of the altitude and the angle of attack at low angles of attack; however, it changed with altitude at an angle of attack of 30°. When the angle of attack was 20°, the interference of the tail fin to the lateral force of the missile body was different from that for other angles of attack, leading to an increase of the lateral force of the rear part of the missile body. With the increasing altitude, the position of the boundary layer with a larger thickness of the missile body moved forward, making the lateral force distribution of the missile body even. Consequently, Magnus moments generated by different boundary layer thicknesses at the front and rear of the missile body decreased and the Magnus moment generated by the tail fin became larger. As lateral force directions of the missile body and the tail were opposite, the Magnus moment direction changed noticeably. Under a high angle of attack, the Magnus moment direction of the missile body changed with the increasing altitude. The absolute value of the pitch moment coefficient of the missile body decreased with the increasing altitude.

Publisher

Hindawi Limited

Subject

Aerospace Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3