An approach for mobility and force/motion transmissibility analysis of parallel mechanisms based on screw theory and CAD technology

Author:

Ma Yue12,Liu Qi12,Zhang Mian12,Li Bin12ORCID,Liu Zhenzhong12

Affiliation:

1. Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, China

2. National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China

Abstract

By integrating screw theory with computer-aided design (CAD) technology, this paper presents an effective and automated methodology for mobility and force/motion transmissibility analysis of parallel mechanisms (PMs). In this approach, A kinematic diagram of a PM termed as the conceptual model, which consists of a solid assembly and several skeleton elements in the form of datum entities and non-geometric entities such as parameters, equations and semantic information, is built by using the 3D modeling capabilities of SolidWorks. For each limb of the PM, a rule-based reasoning (RBR) system is developed based upon the dual and reciprocal properties of screw systems, allowing its own twist/wrench subspaces to be determined automatically by using the joint axis features extracted from the conceptual model. These considerations lead to an automated procedure that can be used to generate the general Jacobian of PMs, allowing the mobility and force/motion transmissibility analysis to be carried out automatically, a work that had to be done manually in the past. Based on the proposed approach, a software package is developed and examples are given to verify its effectiveness.

Funder

National Natural Science Foundation of China

University Natural Science Research Project of Tianjin

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automated Creation of Topological Structure Models of Parallel Mechanisms for Kinematic Performance Evaluation;2023 International Conference on Advanced Robotics and Mechatronics (ICARM);2023-07-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3