A compensation method for the eccentricity and inclination errors of spiral bevel gear based on improved ICP algorithm

Author:

Liu Yongsheng12ORCID,Chen Yixin1,Fang Suping3

Affiliation:

1. Key Laboratory of Road Construction Technology and Equipment, MOE, Chang’an University, Xi’an, Shaanxi, P.R. China

2. Key Laboratory of Advanced Manufacture Technology for Automobile Parts, Chongqing University of Technology, Ministry of Education, Chongqing, P.R. China

3. State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, P.R. China

Abstract

Due to the manufacturing and assembly errors of the spiral bevel gear, the deviations between the measured tooth surface and its theoretical tooth surface will affect the measurement results of the tooth surface. After analyzing the tooth surface deviation of spiral bevel gear, this paper provided a compensation method to compensate the eccentricity and inclination errors by the registration of the theoretical and measured tooth surface. An improved iterative closest point (ICP) algorithm for the registration of the tooth surface was provided. The distance between the point in measured tooth surface and the nearest point in theoretical tooth surface is used to replace the minimum Euclidean distance, and the damping Gauss-Newton method is used to solve the geometric transformation matrix. Simulation experiments were carried out to verify the proposed compensation method. The compensation effect is over 93% for the concave tooth surface and over 89% for the convex tooth surface of the spiral bevel gear. The results also show that the improved ICP algorithm could compensate the eccentricity and inclination errors of the spiral bevel gear more precisely than the basic ICP algorithm.

Funder

chongqing university of technology

fundamental research funds for the central universities

Major Science and Technology Projects of Shaanxi Province

Natural Science Foundation of Shaanxi Province

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3