A novel adaptive sliding mode control approach for electric vehicle direct yaw-moment control

Author:

Fu Chunyun1ORCID,Hoseinnezhad Reza2,Li Kuining3,Hu Minghui1

Affiliation:

1. State Key Laboratory of Mechanical Transmissions and School of Automotive Engineering, Chongqing University, Chongqing, China

2. School of Engineering, RMIT University, Melbourne, VIC, Australia

3. College of Power Engineering, Chongqing University, Chongqing, China

Abstract

Direct yaw-moment control systems have been proven effective in enhancing vehicle stability and handling. The existing direct yaw-moment control designs commonly involve computation of tire side-slip angles, which is susceptible to measurement and estimation errors. The fixed control gain of the conventional sliding mode direct yaw-moment control design cannot adapt to variations and uncertainties in vehicle parameters. As a result, its robustness against parametric variations and uncertainties is limited. To improve the control performance, a novel adaptive sliding mode direct yaw-moment control approach is proposed in this article for electric vehicles with independent motors. The proposed method utilizes a varying control gain to adapt to the variations of front and rear tire side-slip angles. Comparative simulation results show that the proposed scheme outperforms the conventional method with inaccurate tire side-slip angle feedback. With the proposed direct yaw-moment control system on-board, the adverse effects of inaccuracies on tire side-slip angles are suppressed and the vehicle’s robustness against parametric variations and uncertainties is enhanced.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3