MARNet: Multi-head attention residual network for rolling bearing fault diagnosis under noisy condition

Author:

Deng Linfeng1,Wang Guojun1,Zhao Cheng1,Zhang Yuanwen1

Affiliation:

1. School of Mechanical and Electrical Engineering, Lanzhou University of Technology, Lanzhou, China

Abstract

Rolling bearings are crucial components of rotating machinery, and their health states directly affect the overall performance of the machinery. Therefore, it is exceedingly necessary to detect and diagnose bearing faults. Numerous bearing fault diagnosis methods have been successfully used for ensuring the safe operation of rotating machinery. However, in practical working environments, there is a considerable amount of noise, resulting in traditional methods incapable of achieving accurate fault diagnosis. This paper proposes a new multi-head attention residual network (MARNet) for rolling bearing fault diagnosis under noisy condition. MARNet optimizes residual units by simplifying multi-layer convolutions into a single-layer convolution and replaces the rectified linear unit (ReLU) function with the exponential linear unit (ELU) function to obtain a more appropriate activation function. Additionally, the multi-head attention mechanism is introduced into the residual block to capture correlation information between any two time sequences, enhancing the network’s feature extraction capability. The effectiveness and superiority of the MARNet in noisy environments are demonstrated through conducting the two bearing datasets from Case Western Reserve University (CWRU) and Paderborn University (PU). The experiment results show that the proposed method exhibits anti-noise characteristics and generalization capability compared with several up-to-date deep learning methods for fault diagnosis of rolling bearings.

Funder

Key Program of Natural Science Foundation of Gansu Province

National Natural Science Foundation of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3