Maximum mean square discrepancy: A new discrepancy representation metric for mechanical fault transfer diagnosis
Author:
Funder
National Natural Science Foundation of China
Publisher
Elsevier BV
Subject
Artificial Intelligence,Information Systems and Management,Management Information Systems,Software
Reference41 articles.
1. Cross-domain fault diagnosis of bearing using improved semi-supervised meta-learning towards interference of out-of-distribution samples;Lin;Knowl.-Based Syst.,2022
2. High-temperature augmented neighborhood metric learning for cross-domain fault diagnosis with imbalanced data;Duan;Knowl.-Based Syst.,2022
3. Universal domain adaptation in fault diagnostics with hybrid weighted deep adversarial learning;Zhang;IEEE Trans. Ind. Inform.,2021
4. Deep multi-scale adversarial network with attention: A novel domain adaptation method for intelligent fault diagnosis;Zhao;J. Manuf. Syst.,2021
5. Domain-adversarial training of neural networks;Ganin;J. Mach. Learn. Res.,2017
Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Federated transfer learning for machinery fault diagnosis: A comprehensive review of technique and application;Mechanical Systems and Signal Processing;2025-01
2. A two-stage importance-aware subgraph convolutional network based on multi-source sensors for cross-domain fault diagnosis;Neural Networks;2024-11
3. Interpretable modulated differentiable STFT and physics-informed balanced spectrum metric for freight train wheelset bearing cross-machine transfer fault diagnosis under speed fluctuations;Advanced Engineering Informatics;2024-10
4. Envelope spectrum neural network with adaptive domain weight harmonization for intelligent bearing fault diagnosis under cross-machine scenarios;Advanced Engineering Informatics;2024-10
5. An uncertainty perception metric network for machinery fault diagnosis under limited noisy source domain and scarce noisy unknown domain;Advanced Engineering Informatics;2024-10
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3