Few-shot transfer learning method based on meta-learning and graph convolution network for machinery fault diagnosis

Author:

Wang Huaqing1ORCID,Tong Xingwei1,Wang Pengxin1,Xu Zhitao1,Song Liuyang1ORCID

Affiliation:

1. College of Mechanical Electrical Engineering, Beijing University of Chemical Technology, Beijing, People’s Republic of China

Abstract

Due to the lack of fault signals and the variability of working conditions in engineering practice, there is still a gap between the conventional deep learning fault diagnosis models and the practical application. Aiming at the problem of few-shot fault diagnosis in variable conditions, we propose a novel few-shot transfer learning method based on meta-learning and graph convolutional network for machinery fault diagnosis. The 2D convolution module is used to extract latent features. Then the extracted features and their labels are combined as the nodes, and the similarity between the nodes is used as the connection relationship between the nodes, so as to realize the construction of the graph sample. Subsequently, graph samples are input into the graph convolutional network to evaluate the similarity and complete the classification of faults. Crucially, the idea of metric-based meta-learning is integrated into the graph convolutional network to set tasks and extraction methods. Finally, the analysis and comparison of the diagnostic accuracy under different sample capacity and transfer conditions were demonstrated. The results show that the method can achieve 97.25% diagnostic accuracy with only a few samples in the scene of variable working conditions.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A hybrid dynamic adversarial domain adaptation network with multi-channel attention mechanism for rotating machinery unsupervised fault diagnosis under varying operating conditions;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2024-07-26

2. MARNet: Multi-head attention residual network for rolling bearing fault diagnosis under noisy condition;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2024-07-25

3. A Semisupervised GCN Framework for Transfer Diagnosis Crossing Different Machines;IEEE Sensors Journal;2024-03-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3