Affiliation:
1. School of Mechanical Engineering, Dalian University of Technology, China
Abstract
This paper deals with the jerk-minimization trajectory planning of robotic arms, in order to meet the increasing demands of the practical tasks that require fast motion planning of highly dynamic real-time movements for the task execution, by means of polynomial curve-based trajectory design. By solving a constrained quadratic optimization problem, the trajectory planning is optimized by minimizing the jerk of the robot end-effector. Experimental pick-and-place operations are carried out in comparison with the trajectory design without optimization and non-uniform rational B-spline (NURBS) curve, respectively, from which the results show the trajectory optimization is applicable in real-time trajectory planning. Both the numerical simulation and experimental implementations validate the presented approach of optimizing trajectory planning and show the effectiveness.
Funder
Natural Science Foundation of Liaoning Province
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献