Prediction of performance deterioration of rolling bearing based on JADE and PSO-SVM

Author:

Zan Tao1,Liu Zhihao1ORCID,Wang Hui1,Wang Min12,Gao Xiangsheng1ORCID,Pang Zhaoliang1

Affiliation:

1. Beijing Key Laboratory of Advanced Manufacturing Technology, Beijing University of Technology, Beijing, China

2. Beijing Key Laboratory of Electrical Discharge Machining Technology, Beijing, China

Abstract

In order to improve the prediction accuracy of performance degradation trends of rolling bearings, a method based on the joint approximative diagonalization of eigen-matrices (JADE) and particle swarm optimization support vector machine (PSO-SVM) was proposed. Firstly, the features of the time-domain, frequency-domain, and time-frequency-domain eigenvalues of the vibration signal corresponding to the entire life cycle of the rolling bearing are extracted, and the performance degradation parameters are initially selected by using the monotonicity parameter. Then, a fusion feature that can effectively represent the performance degradation is obtained by using the JADE method. Finally, the prediction model based on PSO-SVM is constructed to predict the performance degradation trend. By comparing with the prediction results obtained by other classical methods, it can be proved that this method can accurately predict the performance degradation trend and the remaining useful life (RUL) of rolling bearings under small sample sizes, and has considerable application potentials.

Funder

Beijing Municipal Education Commission Science and Technology Program project

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3