Remaining useful life prediction of slewing bearings using attention mechanism enabled multivariable gated recurrent unit network

Author:

Shao Yiyu1ORCID,Qian Qinrong1,Wang Hua1

Affiliation:

1. College of Mechanical and Power Engineering, Nanjing Tech University, China

Abstract

It is difficult to obtain the damage information on large slewing bearings only from vibration signals. In addition, deep learning models trained on old samples do not achieve high accuracy in new tasks. Therefore, this paper uses vibration, temperature, and torque signals of slewing bearings to build a model. Meanwhile, we add attention mechanism to capture internal correlation of them to consider the related factors of remaining useful life (RUL) from multiple angles. The multivariable gated recurrent unit (GRU) based on attention mechanism gated recurrent unit (attention-MGRU) model is adopted to improve the prediction performance. On this foundation, a fine-tuning strategy is introduced to improve the generalization ability of the model. A full-life accelerated test is carried out on the slewing bearing test bench. The model proposed in this paper is compared with GRU prediction model, which utilizes vibration signals and multivariable GRU prediction model. Mean absolute error (MAE) and root-mean-square error (RMSE) are used as measurement indicators. Among different methods, three indicators generated by attention-MGRU show significant superiority. Moreover, the fine-tuned model performs better in new tasks compared with the original model.

Funder

National Natural Science Foundation of China

Suzhou Key Research and Development Industrialization Project

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3