Review of rolling bearings performance degradation trend prediction

Author:

Wang Yaping1,Lu Kaiting1,Dong Renquan1,Fan Yuqi1ORCID,Jiang Xudong1

Affiliation:

1. Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin, China

Abstract

Rolling bearings are widely used in rotating machinery in modern industry, and ensuring their stability during operation is one of the prerequisites for the overall safety of the equipment. Predicting performance degradation can play a key role in preventing accidents and extending equipment life. With the development of big data and deep learning, more trend prediction methods are emerging in the field of performance degradation prediction of rolling bearings. Therefore, this paper reviews the evaluation indicators and performance degradation prediction models for rolling bearing performance degradation prediction. The advantages and disadvantages of physical degradation indicators, and virtual degradation indicators are analyzed. It is presented to utilize the powerful feature self-extraction ability and nonlinear function characterization ability of deep learning methods to construct bearing evaluation indicators. It also analyzes the research progress of traditional performance degradation prediction models and deep learning prediction models. In this review, future developments in rolling bearing performance degradation prediction are summarized in this paper as deep learning-based, digital twin correlation, high dimensionality, and adaptive, which guide researchers and practitioners to effectively identify suitable performance degradation prediction models.

Funder

The Heilongjiang Provincial Natural Science Foundation of China

The National Natural Science Foundation of China

Publisher

SAGE Publications

Reference143 articles.

1. A Review on Fault Diagnosis for Rail Vehicles

2. Li X, Zhang Y, Cao M, et al. Survey of fault detection and diagnosis technique and its application of rolling bearing. In: The 5th China Bearing Forum, Hangzhou, China, 12 November 2019, pp.12–18.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3