Monitoring of hole surface integrity in drilling of bi-directional woven carbon fiber reinforced plastic composites

Author:

Barik Tarakeswar1,Pal Kamal1ORCID,Parimita Smruti1,Sahoo Priyabrata2,Patra Karali2ORCID

Affiliation:

1. Department of Production Engineering, Veer Surendra Sai University of Technology, Odisha, India

2. Department of Mechanical Engineering, Indian Institute of Technology Patna, Bihar, India

Abstract

Fiber-reinforced plastic is one of the top priorities lightweight materials with excellent mechanical properties for the aerospace industries in recent years. However, it is difficult to machine despite having unique properties due to its non-homogeneous and abrasive nature in alternate fiber and matrix layers. Thus, it is found to be a challenging task to drill hole on such hard-to-machine materials, which is highly essential for the development of most of the engineering structural components. The present work addresses various drilling-induced defects such as delamination, circularity error, and roughness variations in the hole surface during drilling of quasi-isotropic cross-fiber oriented bi-directional woven-type carbon fiber reinforced plastic laminate using a full factorial design of experiments for different drill geometry. The response surface methodology was considered for the regression model development, which was found to be highly significant. The machining forces with associated torque have also been acquired during drilling, which was divided and further analyzed in time domain to correlate with drilling flaws. The drilling-induced delamination was found to be higher at a high feed rate using a higher drill point angle due to substantial thrust force generation at the initial stages in the drilling cycle. However, the internal surface finish with associated circularity error was reduced for higher spindle speed with less feed rate using a low drill point angle because of low torque fluctuation at the final drilling phases. The axial thrust force was found to be a prime indicator of drilled hole surface delamination, whereas drilling torque precisely indicated internal surface roughness as well as circularity error. The global root mean square, along with a local peak of thrust and torque, both were highly essential to completely characterize the drilled hole quality.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3